Reinfeldts bil farligt liten? Video och diagram i Hjulkalendern 13

Ska du välja bilmodell som skyddar dina medpassagerare? Då är nog Reinfeldts nya småbil ingen höjdare. Ju mer plåt som kan pressas ihop utanför kupén, när en bil frontalkrockar – desto mindre våld behöver de åkandes inre organ utsättas för.

I fredagens nätmedia uppgavs att Fredrik Reinfeldt och Pernilla Wahlgren har skaffat ny bil av likadan modell, Fiat 500C. “Roligt och bra val” tycker en bilexpert enligt artikeltexten. Kanske det – så länge de inte blir påkörda eller krockar.

På bilder av Fiat 500C ser det ut som om frampartiets effektiva deformationszon (där fronten tar upp energi under konstant retardation av kupén) inte är mycket längre än några decimeter. Låt mig utgå från 30 centimeter.

Diagram: g-tal som funktion av sträckan vid stopp med konstant acceleration från olika hastigheter (30-50-70 km/h).
Matematiskt samband mellan g-tal och sträcka under hastighetsminskning med konstant acceleration från olika farter (30-50-70 km/h) till noll.

Då visar diagrammet härintill att en krock i 50 kilometer i timmen mot fast barriär innebär g-tal på över 30 för den som sitter fastspänd i kupén och inte får stoppsträckan förlängd av bilens eventuella säkerhetsfunktioner – via krockkuddar, bälten och stol. Hos en ung, frisk och stark person kanske skadliga whiplashrörelser inte uppstår i halskotpelaren, och aortas anslutning till de tyngre inre organen kanske håller. Men …

Betydligt större chans att klara sig oskadda skulle Reinfeldts och Wahlgrens sällskap ha i en större bil med deformationszoner på 50 à 60 centimeter. Då kan g-talet teoretiskt hållas under 20 vid en krock mot barriär eller mot mötande likadan bil i 50 km/h.

Oavsett antalet stjärnor i krocktesterna hos Euro-NCAP, så skyddar småbilar sämre mot inre skador. Den tekniska utvecklingen mellan 1950-talets Citroen och 2000-talets Smart ändrar inte på människans biomekanik. Halveras deformationszonens längd så dubbleras G-krafterna på de åkande vid ett tvärstopp.
Oavsett antalet stjärnor i krocktesterna hos Euro-NCAP, så skyddar småbilar sämre mot inre skador. Den tekniska utvecklingen mellan 1950-talets Citroen och 2000-talets Smart ändrar inte på människans biomekanik. Halveras deformationszonens längd så dubbleras g-krafterna på de åkande vid ett tvärstopp.

Dessutom gör skillnader i vikt och fysikens impulslag att exempelvis en större 1900 kilograms bil (som Labb-Volvon) stöter Fiatens 1100 kilogram bakåt. Om båda håller 50 före frontalkrocken, kommer hastighetsförändringen (delta-v) för Fiaten att bli över 60 km/h (64 vid central, helt oelastisk stöt) medan personerna i den större bilen kan komma undan med mindre än 40 km/h (37).

I en sådan krock bottnar troligen Fiatens deformationszon, så att g-talet för de åkande blir avsevärt större än de 40-50 som diagrammet visar. Därtill kommer risken för inträngande våld och yttre skador, när kupén kollapsar.

Här har nog förenklingarna i resultaten från krockprov trivialiserat det offentliga samtalet. Även om en bil behåller kupén intakt och testbilderna visar att medföljande krockdockor inte får yttre skador, så klarar inte människans inre organ så höga g-tal som exempelvis torde ha förekommit i krocktesten på videon härintill.

Mer om min utgångspunkt på DN Debatt för ett par decennier sedan:
Livsfarligt satsa på småbilar
Lite av fysiken och matten bakom:
Fronta i 50 mot tungt fordon är som bergvägg i 100 – Här finns formeln
Kort bil farligare än krocktest visar: Räkna själv!

_________
Klicka här
för att öppna alla luckor
i 2014 års adventskalender på bildrullen.se.

Nu är olyckor inte trafikantens fel

Nya regler och riktlinjer för trafikansvariga myndigheter gäller från och med i dag. Den enskilde trafikanten ska få hjälp att undvika lömska faror. Paragrafrytteri, vilseledande statistik och schabloner ogillas.

Polisen lotsar fram en förbipasserande ambulans mellan en bärgningsbil och den krockade Volvon
De flesta poliser har redan den respektfulla syn på trafikanten, som alla myndigheter måste redovisa från och med andra kvartalet i år.

Fortsätt läsa “Nu är olyckor inte trafikantens fel”

Kort bil farligare än krocktest visar: Räkna själv!

Halveras krockzonens längd på en bil, så måste konstruktionen dubblera g-krafterna på de åkande i kupén. Annars får de yttre skador av inträngande våld. Men ju större g-krafterna är desto större blir risken för inre skador.

Uppdatering 28 april:
Intuitivt tänkande är nödvändigt i vardagen. Men studier (1, 2) visar att det vilseleder många människor. De refereras här av DN med ett enkelt exempel, som dessvärre har paralleller i mer komplexa och livsviktiga frågor:

Låt dig inte luras av småbilspropagandan och krocktesterna som trafiksäkerhetsansvariga statstjänstemän spenderar skattemedel på!

Nej räkna själv, så ser du också en möjlig förklaring till den senaste tidens ökning av besvär från pisksnärtsrörelser (Whiplash Associated Disorders, WAD på engelska).

Hur man undviker att krascha diskuteras också i kategorin Praktiska tips

Oavsett antalet stjärnor i krocktesterna hos Euro-NCAP, så skyddar småbilar sämre mot inre skador. Den tekniska utvecklingen mellan 1950-talets Citroen och 2000-talets Smart ändrar inte på människans biomekanik. Halveras deformationszonens längd så dubbleras g-krafterna på de åkande vid ett tvärstopp.

Fortsätt läsa “Kort bil farligare än krocktest visar: Räkna själv!”

Därför skadas man värst vid frontkrock mot tyngre fordon

I stadstrafikens 50 kilometer i timmen sitter man väl säkert i en bränslesnål liten bil? Speciellt om den har fått fem stjärnor i krockproven hos Euro-NCAP.

Svar Nej! Om man frontalkrockar mot en ordinär stadsbuss som också kör i 50 blir fartändringen i bilkupén nästan 100 km/h.
Det beror på viktsförhållandet och förklaras med fysikens impulslag.

Även om bilen, bältet och krockkuddarna skulle hålla och skydda mot inträngande våld, så slits kroppspulsådern sönder när de tyngre och kompakta organen rör sig relativt skelett och omgivande vävnader.

Ju kortare deformationszon bilen har, desto större blir g-krafterna på och i kroppen för de åkande. Se min artikel i Nationalencyklopedin under uppslagsordet trafikolycka (underrubrik skaderisker) eller videon och länkarna här vid fliken Myter.

I stället för att ge efter för den lätta personbilen lyfts den styva bussfronten så att personbilens deformationszon inte utnyttjas. Förutom det inträngande våldet som då uppstår blir därför påfrestningarna på de åkande värre i den nämnda busskrocken än i videon nedan, där två lika tunga personbilar (BMW och Volvo) krockar med ungefär 100 kilometer i timmen.

Bilarnas kupéer utsätts alltså i videon för nästan samma fartändring, som om de körde in i en bergvägg med 100 kilometer i timmen (60 miles per hour motsvarar 97 km/h).
Om bilarna hade varit av senare årgång skulle de kanske hållit ihop bättre. Men deformationszonerna är ändå för korta för att rädda de åkande från inre skador.

Det här resonemanget tycks inte vara helt adekvat för frontalkrocken i natt mellan en bil och en buss, när en bilist omkom. I skrivande stund är nyhetsmedia eniga om att krocken ägde rum på länsväg 162 vid Brastad mellan Lysekil och Munkedal.
Men de skiljer sig något i beskrivningen av bussen. GP skriver om en buss, SvD och HD om en linjebuss och DN om en minibuss, där fyra personer färdades utan att få några fysiska skador av krocken.

Viktsskillnaden mellan fordonen i nattens krock förefaller alltså vara mindre än mellan en ordinär personbil och en tung stadsbuss eller långfärdsbuss för flera tiotal passagerare. Men principen är densamma: Det tyngre fordonet skjuter det lättare bakåt vid krocken så att hastighetsändringen för dem som åker i den lättare bilen blir större än vid en barriärkrock i samma fart.

Dessutom måste deformationszonen på tyngre personbilar och minibussar vara styvare än på lättare bilar för att klara testerna mot barriär i Euro-NCAP, som Vägverket – nu Trafikverket – har stått bakom och finansierat med offentliga medel.

Det tyngre fordonet använder alltså det lättares deformationszon, som därför är “uppätet” tidigare i förloppet – innan kupén har fått samma hastighet bakåt som det tyngre fordonet har framåt efter stöten. Är det tyngre fordonet högre än det lättare tillkommer klättringsproblemet, även om det inte är fråga om någon fullstor tung buss.